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Introduction
•Growth chemistry of nc Si:H and Ge:H
•Why do some materials have <111> grain 

and some <220>?
•What controls grain size? How do we get 

larger grains?
•What are the mobilities in device-type 

structures?
•What are the diffusion lengths of minority 

carriers?



Why growth chemistry?

•Typical nc-Si:H has small grains, 10-15 nm
•Idea is to understand how to get large grains 

while preserving good properties such as 
grain-boundary passivation

•We know high T’s will get large grains-but 
break Si-H bonds - increase recombination

•Have to understand growth chemistry - how 
do grains grow - what limits them 



Influence of grain size 

•Larger the grain size, large the mobility 
should be.

•As grain size increases, everything else 
remaining the same, GB recombination 
decreases

•Higher mobility and lower recombination 
lead to longer minority carrier diffusion 
lengths - hence better PV properties



Growth

•2 different techniques will be used
•VHF plasma and REMOTE hot wire
•Look at structural and electronic properties
•Structure: x ray (detailed ) and Raman 

spectrum
•Look at both nc-Si and nc-Ge
•Electronic: Defects and diffusion lengths



VHF growth
•Standard parallel plate geometry
•LOW pressure regimes (25 mTorr to 500 

mTorr)
•silane + hydrogen - different ratios
•Growth temperatures of ~300 C



VHF  Si-X-ray diffraction(ss 
substrate)

XRD 1-4532
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Influence of pressure on grain size
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Ratio of <111>/<220> peaks
VHF films
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Grain size vs temperature-nc 
Si,VHF,50 mTorr
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X-ray  spectrum of hot wire nc-Si films
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Remote Hot wire films, grain size 
vs hydrogen dilution

Hot wire nc Si films

0

5

10

15

20

25

0 10 20 30

Hydrogen/silane ratio

G
ra

in
 s

iz
e

<220>

Increasing 
Hydrogen 
dilution 
reduces 
<220> grain 
size

Increasing 
Hydrogen 
dilution 
reduces 
<220> grain 
size



Ge (111)

Ge (311)

Ge (220)

X-ray spectrum of nc Ge:H, 250 C growth, ECR
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Low Temp nc-Ge:H

X-Ray Diffraction
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GE: Grain Size - Temperature

•Surface diffusion
•Removal of H bonding at GB at higher T
•Similar to nc-Si data
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Ge: <220> Grain Size - H Dilution

•H etching
•H passivation of GB lowers driving force
•More nucleation sites
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What is going on?
•For both Si and Ge, higher T’s lead to larger 

<220> grains
•<220> grain size DECREASES as H 

dilution increases , or pressure decreases
•At a give temperature (250 C) Ge grains 

much larger than Si
•Ge predominantly <220> at normal growth 

temperatures, but at lower T’s, both <111> 
and <220>



Why?
•The natural growth direction is <220>, because 

of larger surface energy for (110) vs (111) 
planes

•Surface energy of (110) plane in Si is 2 J/m2

and that of (111) plane is 1.45 J/m2

•Bonded H interferes with growth of <220> 
grains - in Ge, at a given temperature, less 
bonded H , therefore larger grains

•As temp. decreases, more bonded H, smaller 
grains

•Excess H radicals or ions may lead to random 
nucleation, both <111> And <220>

Too much H 
may be bad!

Too much H 
may be bad!



Can we get large grains in Si at 
normal (~300 C) temperatures?

YES, by controlling pressures in 
remote hot wire

Remote hot wire means filament does 
not heat up the substrate - 11.5 cm 
distance



hot wire nc Si
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Conclusions on Growth

•We can get larger grain sizes by carefully 
controlling growth conditions

•<220> is the natural growth direction, and 
<111> is due to random nucleation

•More work needed to get larger grains



New Method for measuring 
Mobility in device type structures
•Most films as-grown are n type
•Hall effect gives lateral mobility - we need 

mobility along the growth direction
•Hall measurements generally on films on 

glass - devices are on a conducting 
substrate- maybe different materials

•Two methods: Time of flight (Eric Schiff) 
and Space charge limited currents (Dalal)



SCLC

•Under space charge, J = 1.1 V2/L3

•Set up SCLC conditions - Field > qNtL/
•If traps are ~ 1E14/cm3 range, for 1 

micrometer thickness, V > .16 V, and for 
1E15, 1.6 V

•Measure J vs V2 - verify V2 behavior - only 
unknown is mobility



Experimental problems

•Got to make sure there is little a-Si layer -
otherwise effective mobility will be low -
high resistance region will dominate low 
resistance region

•Must get rapid nucleation on n+ substrate



SCLC structure
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Lampert model for sclc with 
single trap
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Lampert model :SCLC with 
Distributed traps
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Results when a thick transition layer ( Did not 
use high H dilution initially)
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How do we minimize the 
transition region?

•By using a thin a-Si layer initially (10-20 
nm), followed by high H dilution (40:1) 
conditions, followed by rapidly down-
graded H (12:1 ratio)

•Why reduce hydrogen/silane ratio: To get 
large grains!



Results for nc Si (Hot Wire) with rapid 
nucleation- grain size (25-30 nm)
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Conclusions

•SCLC can be used to measure electron 
mobilities in n+nn+

•Diffusion lengths and defects in p+nn+
•In principle, we can make n+ type and p+ 

type top contacts on the same samples and 
measure both hole diffusion lengths and 
electron mobilities -underway,  and hole 
mobilities with time of flight (Eric?)

In the same sample, 
measure 
simultaneously 
defects, diffusion 
lengths and mobilities 
of both carriers
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Questions for Ken and Bolko

Given that both Eric and I are probably not getting 
funded, who is going to do the transport and grain 
enhancement work?

Are larger grains not important?

Is measurement of transport not important?


